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«Central Asian Academic Research Center» LLP is pleased to announce that “News of NAS 
RK. Series of Geology and Technical sciences” scientific journal has been accepted for 
indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content 
in this index is under consideration by Clarivate Analytics to be accepted in the Science 
Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities 
Citation Index. The quality and depth of content Web of Science offers to researchers, 
authors, publishers, and institutions sets it apart from other research databases. The 
inclusion of News of NAS RK. Series of Geology and Technical Sciences in the Emerging 
Sources Citation Index demonstrates our dedication to providing the most relevant and 
influential content of geology and engineering sciences to our community.

«Орталық Азия академиялық ғылыми орталығы» ЖШС «ҚР ҰҒА Хабарлары. 
Геология және техникалық ғылымдар сериясы» ғылыми журналының Web of 
Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге 
қабылданғанын хабарлайды. Бұл индекстелу барысында Clarivate Analytics 
компаниясы журналды одан әрі the Science Citation Index Expanded, the Social 
Sciences Citation Index және the Arts & Humanities Citation Index-ке қабылдау 
мәселесін қарастыруда. Web of Science зерттеушілер, авторлар, баспашылар 
мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. 
Геология және техникалық ғылымдар сериясы Emerging Sources Citation Index-ке 
енуі біздің қоғамдастық үшін ең өзекті және беделді геология және техникалық 
ғылымдар бойынша контентке адалдығымызды білдіреді.
 
ТОО «Центрально-азиатский академический научный центр» сообщает, что 
научный журнал “Известия НАН РК. Серия геологии и технических наук» был 
принят для индексирования в Emerging Sources Citation Index, обновленной 
версии Web of Science. Содержание в этом индексировании находится в стадии 
рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала 
в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & 
Humanities Citation Index. Web of Science предлагает качество и глубину контента для 
исследователей, авторов, издателей и учреждений. Включение Известия НАН РК. 
Серия геологии и технических наук в Emerging Sources Citation Index демонстрирует 
нашу приверженность к наиболее актуальному и влиятельному контенту по геологии 
и техническим наукам для нашего сообщества.
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Abstract. Relevance. The problem of predicting the risk of failure of the Earth's 
surface during underground mining remains critically important for ensuring the 
safety of mining operations and minimizing environmental damage. Traditional 
estimation methods often do not take into account dynamic changes in the stress-
strain state of the rock mass (MGP), which reduces their accuracy. In this regard, 
the development of new approaches based on energy criteria and real monitoring 
of the state of IHL is an urgent task. Goal. Development of a new method for 
zone zoning of the surface according to the degree of failure hazard based on the 
energy parameters of the IHL using dynamically updated data on its strength. 
Methods. Energy approach; Dynamic monitoring of IHL strength; Zone zoning; 
Mapping. Results and conclusions. A new criterion for the danger of destruction 
is proposed, based on the geoenergetic potential, taking into account gravitational 
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and deformation processes. A method has been developed to refine the dynamic 
model using GSI and ultrasound tomography, as well as an algorithm for zoning the 
surface according to risk levels. Practical implementation has shown an increase in 
the accuracy of localization of areas with a risk of failure by 5-20%. The method 
makes it possible to reasonably plan the sequence of excavation, effectively manage 
risks and optimize field development. It can be integrated into digital mining 
management systems to improve the safety and economic efficiency of mining 
operations.

Key words: an array of rocks, sinkhole hazard, zone zoning, criterion, geoenergy, 
potential, situational maps
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Аннотация. Өзектілігі. Жер асты тау­кен жұмыстарының қауіпсіздігін 
қамтамасыз ету және экологиялық зиянды азайту үшін жер бетінің сәтсіздігін 
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болжау мәселесі өте маңызды болып қала береді. Дәстүрлі бағалау әдістері 
көбінесе тау жыныстарының массивінің (МГП) кернеулі­деформацияланған 
күйіндегі динамикалық өзгерістерді ескермейді, бұл олардың дәлдігін 
төмендетеді. Осыған байланысты энергетикалық критерийлерге және МГП 
жай­күйінің нақты мониторингіне негізделген жаңа тәсілдерді әзірлеу өзекті 
міндет болып табылады. Мақсат. Оның беріктігі туралы динамикалық 
жаңартылатын деректерді пайдалана отырып, МГП энергетикалық 
параметрлері негізінде сәтсіздік дәрежесі бойынша бетті аймақтарға бөлудің 
жаңа әдісін әзірлеу. Әдістері. Энергетикалық тәсіл; МГП беріктігінің 
динамикалық мониторингі; аймақты аудандастыру; картаға түсіру. Нәтижелер 
мен қорытындылар. Гравитациялық және деформациялық процестерді 
ескере отырып, геоэнергетикалық әлеуетке негізделген жойылу қаупінің жаңа 
критерийі ұсынылды. GSI және ультрадыбыстық томографияны қолдана 
отырып, динамикалық модельді нақтылау әдісі, сондай­ақ тәуекел деңгейлері 
бойынша бетті аймақтарға бөлу алгоритмі жасалды. Тәжірибелік іске асыру 
сәтсіздік қаупі бар аймақтарды оқшаулау дәлдігінің 5­20% ­ ға өскенін 
көрсетті. Әдіс қазба кезектілігін негізді жоспарлауға, тәуекелдерді тиімді 
басқаруға және кен орындарын игеруді оңтайландыруға мүмкіндік береді. 
Тау­кен жұмыстарының қауіпсіздігі мен экономикалық тиімділігін арттыру 
үшін цифрлық өндірісті басқару жүйелеріне біріктірілуі мүмкін.

Түйін сөздер: тау жыныстарының массиві, опырылу қаупі, аймақты 
аудандастыру, критерий, геоэнергия, әлеует, ситуациялық карталар
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Аннотация. Актуальность. Проблема прогнозирования провалоопасности 
земной поверхности при подземной добыче полезных ископаемых 
остается критически важной для обеспечения безопасности горных работ и 
минимизации экологического ущерба. Традиционные методы оценки часто 
не учитывают динамические изменения напряженно­деформированного 
состояния массива горных пород (МГП), что снижает их точность. В этой 
связи разработка новых подходов, основанных на энергетических критериях 
и реальном мониторинге состояния МГП, является актуальной задачей. 
Цель. Разработка нового метода зонного районирования поверхности по 
степени провалоопасности на основе энергетических параметров МГП с 
использованием динамически обновляемых данных о его прочности. Методы. 
Энергетический подход; Динамический мониторинг прочности МГП; Зонное 
районирование; Картографирование. Результаты и выводы. Предложен 
новый критерий опасности разрушения, основанный на геоэнергетическом 
потенциале с учётом гравитационных и деформационных процессов. 
Разработан метод уточнения динамической модели с использованием GSI 
и ультразвуковой томографии, а также алгоритм зонального зонирования 
поверхности по уровням риска. Практическая реализация показала рост 
точности локализации зон с риском провала на 5–20%. Метод позволяет 
обоснованно планировать очередность выемки, эффективно управлять 
рисками и оптимизировать разработку месторождений. Может быть 
интегрирован в цифровые системы управления добычей для повышения 
безопасности и экономической эффективности горных работ.

Ключевые слова: массив горных пород, провалоопасность, зонное 
райони рование, критерий, геоэнергия, потенциал, ситуационные карты

Introduction. Extraction of minerals during underground mining is accompanied 
by the formation of voids. Simultaneously with the loss of continuity, structural 
connections are disrupted, affecting the stability of the system. In response to man­
made impacts, reactionary geomechanical processes are initiated aimed at relaxing 
the state of the RM or forming new structure-forming bonds that support its stability. 
The transience or inertia of the processes is determined by the rate of redistribution 
of the stress-strain state (SSS) and the physical and mechanical properties of the 
array. Critical stress concentrations at the boundaries of inhomogeneities with a 
high degree of curvature, such as peaks and edges of mine workings, dislocations, 
etc. can provoke the formation of foci of destruction, leading to the propagation 
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of natural cracks, the appearance of zones of rock disintegration, initiation of 
displacement processes, as well as sudden uncontrolled collapse of rocks into 
workings. The spontaneity and avalanche-like evolution of the processes make it 
possible to achieve induced disturbances of the Earth's surface, which can lead 
to its failure in a local area. Such a development of the situation may result in 
the unpredictable occurrence of a crisis situation at an unexpected time, in an 
unspecified place on the earth's surface of the deposit in the form of its subsidence 
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Most of the known methods for predicting the risks associated with sinkhole 
formation are formed on the basis of an analysis of the mining and geological 
conditions of the deposit (occurrence of rocks, the specifics of their structure 
and texture, the presence of discontinuous geological disturbances in the form of 
discharges and thrusts, plicative disturbances, karst cavities, the specifics of the 
relief of the Earth’s surface), as well as mining and technical conditions for mining 
minerals (method and procedure of mining, technological schemes, methods of 
protection of workings). The results of the analysis provide detailed information 
about the forms of genesis and patterns of placement of violations, about changes 
in the properties and condition of the mountain range, allow us to make quantitative 
and qualitative assessments of the conditions of formation and occurrence of 
violations, the degree of disturbance, and to make assumptions about the directions 
and intensity of such processes (Shustov et. al., 2012). 

Studies of the risks associated with the development of deposits in conditions 
of probable sinkhole formation show that the assessment of the risk of sinkholes 
can be divided into three stages: forecasting (Gutiérrez et. al., 2008; Galve et. al., 
2009), assessing the severity of the event (Gutiérrez et. al., 2008) and a retrospective 
analysis of previous failures (Theron et. al., 2017). The information obtained from 
the analysis of sinkholes and mapping of underground cavities can be used to 
identify high-risk areas (Andre Theron et. al., 2018).  

Monitoring the condition of the earth’s surface is a traditional way of preventing 
risks associated with the side-work of territories (Issabek et. al., 2019). However, 
instrumental methods with a fairly high accuracy have a significant disadvantage, 
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since they do not allow simultaneous observation of the entire surface. The 
established cause­and­effect relationship between the conditions and processes in 
the mountain range and the daytime surface located in the zone of mutual influence 
determines the sites by the levels of failure hazard. Areas with a high level of 
sinkhole risk in the waiting stage of involvement in the sinkhole formation process 
may be in this state indefinitely. (Mutambo et. al., 2022) provides a unique example 
of the formation of sinkholes in our time on the territory of an abandoned mine 
more than a century ago. 

A more effective tool for detecting signs of sinkhole formation is the methods 
of space radar interferometry (SRI), which can simultaneously cover the entire 
field with a satellite image. The paper (Guerrero et. al., 2021) presents innovative 
approaches to the detection of subsidence in karst areas using interferometric 
radar and InSAR methods, as well as the LiDAR platform for detecting shear 
deformations.  The ability of these products to detect active karst craters in the 
evaporite karst of the Ebro Valley (northeastern Spain) has been demonstrated. 
The authors of (Hamdi et. al., 2020) also cite the results obtained using InSAR 
methods for large-scale monitoring of deformations of the Earth’s surface and soil 
instability in two craters that collapsed and caused serious damage in the Cheria 
basin (Algeria).  In (Muhagir et. al., 2021), the results of a study of the deformation 
of the earth’s surface due to excessive exploitation of groundwater are presented. 
Based on the analysis of Sentinel-1 data, deformations of the earth’s surface were 
revealed in the form of an extensive subsidence bowl (28.5 km in diameter) with 
a maximum sinking rate of 40 mm/year and a standard deviation inside the bowl 
of less than 2 mm/year.. The a uthors of (Zherong et. al., 2023) have shown that 
the multi­time synthetic aperture interferometric radar (InSAR) is an effective tool 
for measuring large-scale land subsidence, but requires automatic methods for 
detecting and classifying subsidence.

Radar interferometry makes mistakes due to atmospheric effects that can mask 
the actual displacements of the Earth’s surface. Stable reflector methods and special 
smoothing filters are used to reduce atmospheric interference when processing a 
series of interferograms (Franck et. al., 2021). The use of numerical meteorological 
models has also shown its effectiveness in reducing atmospheric noise, which has 
been confirmed in tropical regions. 

A common disadvantage of space technology is the loss of relevance of the data 
obtained due to the long-term processing of information to achieve the required 
accuracy, thereby limiting practical use in solving the problems of forecasting 
failure formation. 

In Kazakhstan, based on the established causal relationship between processes in 
the massif and on the surface, the scientific and methodological base of methods for 
detecting weakened zones on the earth’s surface of ore deposits has been developed 
(Spitsyn et. al., 2019). 

 These methods, unlike others, allow spatial localization of areas of the earth’s 
surface with a high level of sinkhole risk throughout the field. The presence of 
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voids leads to an excess of the geoenergy level relative to the level of the array 
in a stable state, thereby determining the metostability of the state of the RM. At 
the same time, under conditions of mass invariance, the basic principle of stability 
is violated, in which the system has a minimum value of potential energy. This 
determines the use of the amount of geoenergy between the two states as a criterion 
for zone zoning. 

In (Sadykov et. al., 2019), the excess geoenergy is considered to be the potential 
gravitational energy of RM without taking into account the potential energy of 
elastic deformation. This leads to a loss of zoning accuracy.  The most accurate 
results in the localization of areas with a high level of failure risk were obtained 
using two criteria (Imansakipova et. al., 2021), determined, respectively, by changes 
in geoenergy during the transition of the array from the initial state (stable) to the 
current and from the current (metastable) to the final (stable). 

The disadvantages of this approach include the following: the calculation of 
criteria does not take into account changes in the GSI rating, in addition, when 
calculating the energy density of elastic deformation, only external pressures on the 
layer from the overlying rocks are used, but the internal pressure created by its own 
weight in the layer is not taken into account.  

To improve the accuracy of zoning, a criterion is proposed that takes into account 
the internal pressure in the layer and the current values of the GSI rating, which is 
set according to the fracture parameters determined experimentally.

Materials and basic methods.
Energy is a universal measure of movement and a source of realization of 

processes. The greater the excess of geoenergy of the metastable state of the RM 
over the stable one, the greater the likelihood of the development of processes, the 
ultimate goal of which is failure formation.  Geoenergy W is determined by the 
sum of the potential gravitational energies WT and elastic deformation Wd and is 
therefore potential. It follows that the potential of geoenergy φ  is equal to the sum 
of the gravitational potentials φd:

   φ = φT+ φd,               (1)

where 
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where ­j the index that defines the coordinate of the lower boundary of the mine.
Each layer experiences pressure from the overlying layers and internal pressure 

created by its own weight. The internal pressure varies from 0 upper part to qpihi. 
In this regard, its average value of 0,5 qpihi.. Thus, the total pressure to which the 
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where Ei Young’s modulus, µi is the Poisson’s ratio. 
Cracking processes have an impact on the GSI rating and elastic properties of 

the rock mass, thereby changing the energy of elastic deformation. In this situation, 
it becomes necessary to update data on fracture parameters.

The studies (Ma et. al., 2022) consider changes in the ultrasonic and mechanical 
properties of rock and identify the characteristics of fracturing and subcritical crack 
propagation of rocks with different lithologies.    

The most effective methods are ultrasound tomography (Zubelewicz et. al., 
2024). For the practical implementation of the method in mining conditions, a 
method has been developed, protected by the patent of the Republic of Kazakhstan 
(Patent na izobretenie RK No. 35795, 2024), in which the study of fracturing of a 
rock mass by ultrasonic waves is carried out from one well according to the delay 
time of receiving ultrasonic pulses reflected from cracks relative to those generated, 
for this piezoelectric transducers are installed at the vertices of a regular n-gon 
inscribed in the cross–section of the well - sensors, the input of which is connected 
to the ultrasonic pulse generator, the output – To a pulse analyzer to determine the 
delay time that converts electrical energy into acoustic energy and vice versa, the 
angle of the polygon is determined by the effective angle of the radiation pattern of 
the sensor.  

According to experimentally determined parameters of the cracks in the massif, 
the geological strength index (GSI) is recalculated based on the Hawke-Brown 
elastoplastic deformation model, according to which the modulus of elasticity of 
the massif is calculated (Babets et. al., 2017):
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where n is the number of layers.
From (9), for the potential, the energy of elastic deformations of the column in 

the current state φdn follows:

7 
 

rock and identify the characteristics of fracturing and subcritical crack propagation of rocks with 
different lithologies.     

The most effective methods are ultrasound tomography (Zubelewicz et. al., 2024). For the 
practical implementation of the method in mining conditions, a method has been developed, 
protected by the patent of the Republic of Kazakhstan (Patent na izobretenie RK No. 35795, 2024), 
in which the study of fracturing of a rock mass by ultrasonic waves is carried out from one well 
according to the delay time of receiving ultrasonic pulses reflected from cracks relative to those 
generated, for this piezoelectric transducers are installed at the vertices of a regular n-gon inscribed 
in the cross–section of the well - sensors, the input of which is connected to the ultrasonic pulse 
generator, the output – To a pulse analyzer to determine the delay time that converts electrical 
energy into acoustic energy and vice versa, the angle of the polygon is determined by the effective 
angle of the radiation pattern of the sensor.   

According to experimentally determined parameters of the cracks in the massif, the geological 
strength index (GSI) is recalculated based on the Hawke-Brown elastoplastic deformation model, 
according to which the modulus of elasticity of the massif is calculated (Babets et. al., 2017): 

 
Еi=E0i(0,02+ ),                           (8) 

 
 where, Еi and Е0i − the modulus of elasticity of the i-th layer in the current and initial states 

respectively. 
 The currently established modulus of elasticity Еi, determined by the current values of the 

GPI rating, leads to a change in the volumetric modulus of elasticity Ki.   
Accordingly, the energy of elastic deformation of the column in the current state Wdn, (Fig.2b) 

will be equal to: 

Wdn = ,                              (9) 
 
where n is the number of layers. 
 From (9), for the potential, the energy of elastic deformations of the column in the current 

state  follows: 

                                            (10) 
                        

 The potential of geoenergy in the final state f is determined by: 
 

f  =                       (11) 
 

Potential energy is a relative quantity, determined with precision to a constant. The energy and 
potential in the final state are taken as the zero level.  

According to this, the potential of geoenergy in the current state n0  will be equal to: 
 

n0= +  
                                                                               

                                (12) 
 

           (10)
                       

The potential of geoenergy in the final state φf is determined by:
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Potential energy is a relative quantity, determined with precision to a constant. 
The energy and potential in the final state are taken as the zero level. 

According to this, the potential of geoenergy in the current state φn0 will be equal 
to:
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Results. A qualitative assessment of the influence of the parameters that determine 
the state of RM and are included in the basis of the criterion on the formation of 
the potential of geoenergy is carried out on a simplified model. According to which 
the array is considered homogeneous in physical and mechanical properties with 
values of density (p =2,7⋅ 103 kg/m3), Young’s modulus (Е=0,2⋅ 10-3 MPa) and 
Poisson’s ratio (µ=0,6⋅ 10-3). 

Fundamentally differing in the physics of origin, gravitational energy and 
elastic deformation differ qualitatively and quantitatively in their contribution to 
the accumulation of geoenergy of the layer and the formation of the criterion. The 
exponential dependence of the elastic deformation energy on the depth of the layer, 
in contrast to the linear dependence of the gravitational energy, leads to an increase 
in its share and increased importance in the formation of geoenergy (potential, 
criterion). This is clearly seen from the dependence of the potentials of the elastic 
deformation energies φd, gravity φT and geoenergy φ on the depth of the layer 
following from (10) and (12) (Fig.3).
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The gravitational energy potential of the Т layer is determined by its position in the Earth's 

gravitational field, does not depend on its mass, and, in accordance with the selected reporting 
system, varies from the zero value of the lower part of the column to the maximum value in the 
upper one. The elastic deformation potential d is determined by the amount of accumulated energy 
of the layer under the influence of external forces, which varies from the maximum value under the 
weight of the overlying rocks of the entire column to the value determined by the internal pressure 
in the lower part.  Unlike the gravitational energy potential, the elastic deformation energy potential 
depends on the GSI rating (8, 10). 

Figure 4 shows a graph of the dependence of the ratio of the specific energies of the layer in the 
initial state 0i  and in the current i   states on the GSI rating (8). 
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Figure 3 - Change in elastic deformation potentials φd, gravitational energy φT, and geoenergy φq 
of the layer with depth Z

The gravitational energy potential of the φT  layer is determined by its position 
in the Earth’s gravitational field, does not depend on its mass, and, in accordance 
with the selected reporting system, varies from the zero value of the lower part 
of the column to the maximum value in the upper one. The elastic deformation 
potential φd is determined by the amount of accumulated energy of the layer under 
the influence of external forces, which varies from the maximum value under the 
weight of the overlying rocks of the entire column to the value determined by the 
internal pressure in the lower part.  Unlike the gravitational energy potential, the 
elastic deformation energy potential depends on the GSI rating (8, 10).

Figure 4 shows a graph of the dependence of the ratio of the specific energies 
of the layer in the initial state ω0i and in the current ωi states on the GSI rating (8).
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Figure 4 ­ Dependence of the ratio of the specific energies of the layer in the initial state ω0i and 
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The influence of the GSI rating on the amount of elastic deformation energy 
indicates the need to use its current values in the calculations of the criterion based 
on the potential of geoenergy. For this purpose, fracture parameters were determined 
by ultrasonic sounding of the rock mass from a drilled well (Babets et. al., 2017).

An OPGS pulsed ultrasonic generator and CA-YD-187T piezoelectric 
transducers were used for the study. OPGS is a universal multichannel oscillator 
capable of exciting ultrasonic converters with a frequency of 50-500 kHz. The 
reception of the signal from the piezo sensors and their analysis was carried out on 
a personal computer using MatLab software. An acoustic probe with piezoelectric 
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sensors was lowered into the borehole discretely with an interval of 15-20 cm. The 
probe was oriented so that the main axes of the lobes of the piezoelectric sensor 
pattern were orthogonal to the axis of the well. The position of the probe for each 
measurement was fixed by a pressure pneumatic system, which at the same time 
provided reliable contact conditions for the piezo sensors with the mountain range. 
As an example, Tables 1 and 2 show the fracture parameters from a well drilled at 
horizon 13 (Chamber 10, Panel 116, Block 03, K 42).

Table 1 – Angles of incidence of the slit plane on the borehole axis
Angle of incidence of the crack plane 
on the borehole axis, degrees (±5°) 15 30 45 60 75 90 105 120 135 150 165 180

The number of planes with the same 
angle of incidence 65 3 4 3 1 3 55 1 3 4 54 1

Table 2 – Fracture system for the borehole massif

Fracturing 
system

Elements of occurrence The distance 
between 
the cracks, m.

Crack 
opening, mm

Azimuth
of the strike, deg.

Angle
of incidence, deg.

1 175±15 15±11 0,18±0,6 1
2 270±12 105±9 0,24±0,19 6
3 0±11 165±7 0,19±0,23 1

The distance between the cracks ranges from 0.18 to 0.24 m, the degree of crack 
opening ranges from 1 to 6 mm, the cracks are filled with a solid filler. Most cracks 
are steeply sloping with angles of inclination from 65 to 85 degrees. 

According to the obtained fracture parameters, an assessment is carried out 
using the GSI rating indicators. For our example, the GSI index is 47, in contrast to 
the established value for core samples in laboratory studies - 65.   

For convenience in practical use, comparing the results obtained by different 
methods, as a rule, a unified form of representation of the criterion in the form of a 
relative value is used. In the proposed method, the value γ is selected:
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(Zubelewicz et. al., 2024) and the М2 method, the same site of the Ridder-Sokolny deposit was 
selected. The same parameters characterizing the state of RM were used to calculate the criterion, 

№ Name of the excavation unit Depth of 
development 

Dredging 
capacity 

Depth of the 
sinkhole Loosening ratio 

1 23 л.о. Blocks 12, 17, 21, panels 54, 15, 120, 90 254 70 21 1,19 

2 17 л.о. Blocks 1, 9, 7, panels 18, 135, 2, 22, 23, 50 247 52 36 1,06 

3 The fracture line, Blocks 7, 4-5, panels 45, 9, 113 211 37 19 1,09 

4 23 л.о. Blocks 16, panels44 283 65 16 1,17 

5 4 л.о. (20-24 л.ш.), panels 30, 31 99 55 20 1,35 

6 5 л.о. (19-24 л.ш.), panels 30, 31, 41, 42 111 57 20 1,33 

7 4 л.о. (11-16 л.ш.), panels 24, 16 91 40 24 1,18 

8 5 л.о. (11-16 л.ш.), panels 4, 16 110 37 16 1,19 

9 2 л.о. Blocks 5, 4, panels 15, 16, 24, 13 266 95 27 1,26 

                         (13)     

where φn and φf It is determined, respectively, from (11).

The boundary values of the criterion for the conditions of the Ridder-Sokolny 
deposit were established based on a retrospective analysis of the causes and 
parameters for nine sinkholes that occurred at different times and on different 
surface areas (Table 3).
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Table 3 – Funnel parameters

№ Name of the excavation unit Depth of 
development

Dredging 
capacity

Depth 
of the 
sinkhole

Loosening 
ratio

1
23 л.о. Blocks 12, 17, 21, panels 54, 15, 
120, 90 254 70 21 1,19

2
17 л.о. Blocks 1, 9, 7, panels 18, 135, 2, 
22, 23, 50 247 52 36 1,06

3
The fracture line, Blocks 7, 4-5, panels 45, 
9, 113 211 37 19 1,09

4 23 л.о. Blocks 16, panels44 283 65 16 1,17

5 4 л.о. (20-24 л.ш.), panels 30, 31 99 55 20 1,35

6 5 л.о. (19-24 л.ш.), panels 30, 31, 41, 42 111 57 20 1,33

7 4 л.о. (11-16 л.ш.), panels 24, 16 91 40 24 1,18

8 5 л.о. (11-16 л.ш.), panels 4, 16 110 37 16 1,19

9 2 л.о. Blocks 5, 4, panels 15, 16, 24, 13 266 95 27 1,26

The depth of the sinkholes ranged from 16 to 36 m with a depth of development 
from 91 to 283, a dredging capacity from 37 to 95 and a loosening coefficient from 
1.06 to 1.35. Based on archived data on the state of the RM preceding each event, 
the surface was zoned according to criterion γ (13) and its boundary values were set.

For the Ridder-Sokolny deposit, the zones are divided into three levels of failure 
hazard, which are determined by two boundary values of the criterion (Table 4).

Table 4 – Numerical values of boundary criteria
Fire hazard level g

More Less
High (red) 13
Medium (yellow) 8 13

Low (green) 8

Situational maps are created based on the results of zone zoning.
For a correct comparison of the zoning results using the proposed M1 method 

obtained in (Zubelewicz et. al., 2024) and the М2 method, the same site of the 
Ridder-Sokolny deposit was selected. The same parameters characterizing the 
state of RM were used to calculate the criterion, including its boundary values. 
The exception is the values of the Young's modulus, which in the new method are 
determined by the actual values of the GSI.

Figure 6 (b) provides the current situational map obtained from the results of 
zone zoning in accordance with the developed methods (М2). For comparison, 
Figure 6 (a) shows a situational map from (Zubelewicz et. al., 2024) based on the 
method of zoning according to two criteria (М1). 
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A comparative analysis of the figures shows that the use of a criterion based on 
the potential of geoenergy, which takes into account the current values of GSI and 
internal pressure, changes the boundaries of zones with different levels of failure 
hazard. Areas with a high level of sinkhole risk, defined by two criteria М1, are 
represented by separate zones with М2 that retain their sinkhole status. At the same 
time, the total area of zones with a high level of failure risk is reduced by 5.9%. 
This is a consequence of taking into account changes in the elastic properties of the 
RM in the М2 criterion. 

The main objectives of risk management are forecasting, taking preventive 
measures to prevent them and minimizing the consequences of their implementation. 
In this direction, the method is an effective tool for developing an optimal mining 
development plan based on an analysis of its implementation options based on 
the results of zone zoning, which does not allow the expansion of existing and the 
formation of new zones with a high level of failure risk.
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The laying of voids formed during mining is the most effective method of 
restoring a mountain range to a stable state and is therefore an essential component 
of risk management related to sinkholes. In this situation, to prevent the realization 
of risks, it is necessary to establish the order of laying voids. In the absence of 
techniques that determine this sequence, the laying of mine workings is carried 
out without taking into account the potential danger of surface failure. At the same 
time, the dependence of the criterion of the proposed method on the total capacity 
Ʃ mj and the depth of their occurrence zj (11,13) allows us to determine the degree 
of influence of the laying of certain voids on reducing the level of sinkhole. The 
voids with the greatest degree of influence should be laid first. The effectiveness of 
the laying works is largely limited by the problem of choosing the order of laying 
the mine workings. In solving this problem, based on a reasonable choice of the 
sequence of laying voids, the zonal zoning method has shown its effectiveness. As 
an example, the figure shows the results for two virtual options for laying voids 
on the 14th horizon (block 2, chambers 10, volume of voids 2217 m3, chamber 12, 
volume of voids 7206 m3) and the 16th horizon (block 25, chamber 1, volume of 
voids 3070 m3, block 25, chamber 3, volume of voids 7146 m3) and their effect on 
the surface condition (Figure 9). Horizon 18 (block 95, chambers 3, void volume 
4789) (Fig.8).
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Obviously, in the current situation, in order to reduce the level of sinkhole risk of a surface area, 

it is a priority to lay the 15th horizon, in which the area of high-risk zones is reduced by 57%. For 
comparison, when laying the voids of the 14th horizon, this value decreases by 29%.  

The known methods do not contain a justification for the number of observation stations and the 
choice of their position on the profile lines in relation to the current state of the array. At the same 
time, the results of zoning, obtained on the basis of a causal relationship between the state of the 
massif and the processes on the earth's surface, allow motivated management of these actions. In 
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Obviously, in the current situation, in order to reduce the level of sinkhole risk 
of a surface area, it is a priority to lay the 15th horizon, in which the area of high-
risk zones is reduced by 57%. For comparison, when laying the voids of the 14th 
horizon, this value decreases by 29%. 

The known methods do not contain a justification for the number of observation 
stations and the choice of their position on the profile lines in relation to the current 
state of the array. At the same time, the results of zoning, obtained on the basis 
of a causal relationship between the state of the massif and the processes on the 
earth’s surface, allow motivated management of these actions. In accordance with 
the physical representation of the potential of geoenergy, taken by the criteria of 
zoning, all points of the earth’s surface located on the same equipotential line, in 
accordance with the principle of invariance, are in an identical state. This makes it 
possible to optimize ground-based instrumental observations. 

Figure 10 shows, as an example, a plan for the location of observation stations 
with green areas (areas with a low level of sinkhole risk).
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Figure 10 − Combined layout of observation stations and green areas 
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carried out at one station without loss of information content. The time saved for monitoring green 
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internal pressure in the layer and the current values of the GSI rating, has shown its effectiveness. 
The method makes it possible to increase the accuracy of localization from a site with a high level 
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an optimal mining development plan based on an analysis of its implementation options based on 
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managing risks in a changing state of the mountain range. Modeling of the geoenergy potential, a 
simplified model of a homogeneous array (p=2.7·103 kg/m3, E=0.2·10-3 MPa, m=0.6·10-3) made 
it possible to qualitatively assess the contribution of gravitational energy (linear dependence on 
depth) and elastic deformation (exponential dependence). The energy of elastic deformation 
dominates with increasing depth, which increases its importance in the formation of the criterion of 
failure hazard. The impact of the GSI rating. The elastic deformation potential depends on the GSI, 
which confirms the need for its current values. Ultrasound tomography (OPGS device, CA-YD-
187T sensors) revealed a discrepancy between field (GSI=47) and laboratory (GSI=65) data, which 
is critical for the accuracy of the forecast. The criterion of failure risk. A dimensionless criterion γ 
(relative potential change) has been introduced, which is convenient for comparing different 
methods. Using the Ridder-Sokolny deposit as an example, it was found that taking into account 
GSI and elastic properties reduces the area of high-risk zones by 5.9%. Risk management. The 
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The green areas are covered by 28 observation stations. At the same time, in 
accordance with the principle of invariance of the method, monitoring of the territory 
of the green zone can be carried out at one station without loss of information 
content. The time saved for monitoring green areas can be used to increase the 
effectiveness of monitoring the condition of areas with a high level of failure risk. 

Discussion. 
The practical implementation of the method of zoning the earth’s surface 

according to the level of collapse, the criterion of which is the potential of geoenergy, 
taking into account the internal pressure in the layer and the current values of the 
GSI rating, has shown its effectiveness. The method makes it possible to increase 
the accuracy of localization from a site with a high level of sinkhole risk by 5-20%, 
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unlike the known ones, and can serve as an effective tool for developing an optimal 
mining development plan based on an analysis of its implementation options based 
on the results of zone zoning and a reasonable choice of the sequence of laying 
voids. 

Conclusion. 
The conducted research has confirmed its high practical effectiveness for 

predicting failures and managing risks in a changing state of the mountain range. 
Modeling of the geoenergy potential, a simplified model of a homogeneous array 
(p=2.7·103 kg/m3, E=0.2·10­3 MPa, m=0.6·10­3) made it possible to qualitatively 
assess the contribution of gravitational energy (linear dependence on depth) and 
elastic deformation (exponential dependence). The energy of elastic deformation 
dominates with increasing depth, which increases its importance in the formation 
of the criterion of failure hazard. The impact of the GSI rating. The elastic 
deformation potential depends on the GSI, which confirms the need for its current 
values. Ultrasound tomography (OPGS device, CA-YD-187T sensors) revealed a 
discrepancy between field (GSI=47) and laboratory (GSI=65) data, which is critical 
for the accuracy of the forecast. The criterion of failure risk. A dimensionless 
criterion γ (relative potential change) has been introduced, which is convenient for 
comparing different methods. Using the Ridder­Sokolny deposit as an example, 
it was found that taking into account GSI and elastic properties reduces the area 
of high-risk zones by 5.9%. Risk management. The method makes it possible to 
optimize the laying of voids: priority is given to the workings with the greatest 
impact on reducing the risk of failure (for example, laying the 15th horizon reduces 
the danger zone by 57% versus 29% for the 14th horizon). 

Monitoring is optimized due to the principle of invariance: in homogeneous 
zones, one observation station is sufficient, which saves resources. Advantages of 
the method. Increase the accuracy of localization of hazardous areas by 5-20% 
compared to traditional methods. A tool for adaptive mining planning and a 
reasonable sequence of laying operations.
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